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Cryptography

Context

Cryptography has been used for a long time for confidentiality
purposes

Mobile phones

Banks

Cars
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Side channel attacks

Reduction in cryptography security in real situation
Possibility to find the secret key when we focalize on a side channel

Timing attack (Kocher - 1996)
Electromagnetic attack (Gandolfi, Mourtel & Olivier - 2001)
Power monitoring attack (Kocher, Jaffe & Jun - 1999)
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Power monitoring attack
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EM leakage

[1]
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T (Q)
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o

[1] MARTINASEK, Z., ZEMAN, V., TRASY, K.. Simple Electromagnetic Analysis in Cryptography.
International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems, North
America, 1, sep. 2012.
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Side channel attacks

Non-profiling attacks

f is the target function (e.g. SBox) using P and Q
L is the leakage model (e.g. HW)
D is the distinguisher (e.g. Pearson correlation)

Q̂ = arg max
Q2Q

| D (L (f (P ,Q)) ,T ) |
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Profiling attacks

Q̂ = arg max
Q

P(Q|T )

Q̂ = arg max
Q

P(T |Q)⇥P(Q)
P(T )

Q̂ = arg max
Q

P̂(T |Q)⇥ P̂(Q)

How to estimate P(T |Q)?
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Profiling attacks

Parametric methods
TA (i.e. P(T |Qi ) ⇠ N(µi ,⌃i ) ) [S. Chari et al. 2002]

SA (i.e. P(T |Qi ) ⇠ N(µi ,⌃) ) [W. Schindler et al. 2005]

Non-parametric methods [L. Lerman et al. 2011 & 2013, G. Hospodar et al. 2011,
A. Heuser et al. 2012, T. Bartkewitz et al. 2012]

SVM
RF
KNN

Results in unprotected contexts
A ML model is as efficient (and often better) than TA
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Side channel attacks

Countermeasures

Several countermeasures
Masking
Hiding

Several algorithms of masking schemes
Boolean, multiplicative, affine masking schemes
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Issues

Are the results of the previous ML works still the same in a

protected environment?

1 How many traces are required
1 against a protected device with a ML model compared to a

strategy based on TA or SA?
2 by a ML model attacking a protected device compared to an

unprotected device?

2 What is the impact of the number of traces used in the
profiling step by a ML model attacking a protected device?
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Framework

Data CollectionCryptographic Device 
Implementation Pre-Processing

PRELIMINARY PHASE

Profiled Model Selection

Profiled Model 
(e.g. SVM, TA, SA)

PROFILING PHASE

ATTACKING PHASE

Non-Profiled Attack 
(e.g. CPA, KS, MIA)

mask valueSecurity Level 
Estimation

POST-ATTACKING PHASE

1 2

34

Lower the error between the correct and the estimated mask values,
higher the correlation between the real and the predicted traces for

the correct key
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Experiments

Target

AES-128 protected by the Rotating Sbox (Boolean) Masking
scheme (based on table look-up)
Atmel ATMega-163 smart card
According to its authors (in a hardware context):

Performances and complexity close to unprotected scheme
Resistant against several side-channel attacks
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Models

Profiling attacks
TA
SA
SVM
RF

Non-profiling attack
CPA on HW(maskedSBox(plaintext � mask � key))
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Experiments

Dataset

Public dataset of the DPAContest V4 (updated in October)
Electromagnetic emission leakages
First round of AES
Each trace has 435,002 samples
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Experiments

Finding the offset value on traces

⇢(tT , offset) on 1500 traces

Feature selection step:
50 instants highest linearly correlated with the offset value
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Experiments

Model estimation

Validation set
1500 traces

Testing set

100%
75%
50%
25%

Learning set
1500 traces
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Experiments

Model selection results

Higher the number of traces in the learning set, higher the
accuracy
Higher the number of features, higher the success rates for
SVM, RF and SA (except TA)
The success rates of

ML models
SVM: 0.88
RF: 0.81

SA: 0.90
TA: 0.66
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Attacking step

Minimum number of traces
Average number of traces
Maximum number of traces
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Minimum number of traces
Average number of traces
Maximum number of traces

Unprotected
device Protected device

Unmasked implementation

CPA: 16.3 traces in
average (5s)

Masked implementation

SVM / CPA: 26 traces
in average (20s)
SA / CPA: 27.8 traces in
average (80s)
TA / CPA: 56.4 traces in
average (45s)
SA: 107 traces in
average (180s)
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Discussion & Conclusion

(Unprotected) implementation of the Rotating Sbox Masking
26 traces with 20s during the attacking phase

ML approach outperforms TA in data complexity
Original SA is less efficient than the new strategy based on SA
SVM outperforms SA in time complexity
How to improve the attack ?

Increasing the number of points selected in each trace
Optimizing the model’s parameters
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Last but not least ...

Official result in the DPAContest V4 :

22 traces with 0.528 seconds

in order to retrieve the secret key of AES-128
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